... Más de 3.000 m de mediciones MASW de alta resolución & más de 265 mediciones ReMi ejecutados y procesados para proyectos de ingeniería e estudios geotécnicos in América del Sur entre 2006 y 2016 ...

Para mayor información sobre nuestros servicios por favor contactarnos:

Sascha Bölling - Geofísico Sénior |      Celular (Whatsapp): +54 (9) 261 685-3640  

Nuestros Clientes: 

  • GOLDER Associates S.A.
  • VICEROY Exploration Ltd.
  • MAPLE Minerals Exploration & Development 
  • Compañia Minera Nevada Ltd.
  • XStrata Copper
  • Minera Agua Rica
  • YAMANA Gold Inc.
  • ISOLUX Corsan
  • GHESA S.A.
  • BGC Engineering Inc.
  • AMEC International
  • ARCADIS Goetecnica
  • PITEAU Associates Engineering Ltd.
  • Cerro Vanguardia S.A.
  • ANGLOGOLD Ashanti 
  • Lithium Americas / Exar 
  • AUSENCO Vector Peru
  • Minera Andes S.A.
  • RODINIA Minerals Inc.
  • LI3 Energy
  • ERAMINE South America / Bolera Minera S.A. 

Nuestras Referencias de los Proyectos se puede descargar acá ...

MASW (Multichannel Analysis of Surface Waves)


The multichannel analysis of surface waves method (MASW) is a nondestructive seismic method to investigate shallow subsoil conditions as well as to evaluate linear elastic modulus of ground and subsoil materials.  It analyzes dispersion properties of certain types of seismic surface waves (fundamental-mode of Rayleigh waves) propagating horizontally along the surface of measurement directly from impact point to receivers. It gives this shear-wave velocity (Vs) (or stiffness) information in either 1-D (depth) or 2-D (depth and surface location) format in a cost-effective and time-efficient manner. The main advantage with the MASW method is to take a full account of the complicated nature of seismic waves that always contain harmful noise waves such as higher modes of surface waves, body waves, scattered waves, traffic waves, etc. These noise waves may result in a significant portion of the recorded data being dubious if not properly accounted for. The fundamental framework of the MASW method is based on the multichannel recording and analysis approach long used in seismic exploration surveys. These techniques can discriminate useful signal against all other types of noise by utilizing pattern-recognition techniques.


Refraction Microtremor


Refraction Microtremor (ReMi) is a surface-wave seismic method for estimating in-situ Rayleigh-wave (shear-wave) velocities down to depths of 100 meters. Developed by Optim™ of Reno, Nevada, ReMi has a 5 to 15 percent accuracy, with the accuracy decreasing with depth.  Rayleigh waves are surface shear-waves that are also known as “ground roll.”  As the wave passes along the ground, each surface particle moves in a “retrograde elliptical” motion.  This type of motion consists of a roughly circular path in a direction opposite the direction of propagation (see diagram).  With depth, the ellipses become smaller and smaller, until there is no motion.  Lower frequency waves produce elliptical particle motion deeper into the ground.  Surface waves attenuate (decay) in amplitude more slowly than body waves, such as those recorded with seismic refraction, and therefore the ReMi technique can penetrate deeper into the subsurface for a given seismic array. Testing is performed at the surface using the same seismograph and vertical P-wave geophones as are used to acquire refraction data.  ReMi data are recorded directly before or after the refraction data through the same geophone setup. The seismic source consists of ambient seismic noise, or microtremors, which are constantly generated by cultural and natural sources.  In addition to the passive source noise, seismic noise can be induced by active sources. The data acquisition procedure consists of obtaining at least ten 30-second seismic noise records at a sample interval of 2 milliseconds.  The result is a 1-D image of the subsurface shear-wave layering below the center of the geophone array.



Aplicaciones de Microtremor 

  • Earthquake site response 
  • IBC site classification based on 30m
  • average shear-wave velocity Site amplification maps
  • Mapping the subsurface and estimating the
  • strength of subsurface material
  • Coupled with P-wave information, one can derive Poisson’s ratio and other engineering parameters
  • Complementing seismic refraction analysis in areas characterized by near-surface velocity reversals
  • Maps low velocity zones that refraction cannot
  • Extends depth of investigation in some cases
  • Evaluating compaction quality

 Ventajas de Microtremor 

  • ReMi compares well with previously used 1-D shear-wave measurement techniques
  • Determine subsurface properties
  • Derive parameters useful for geotechnical engineering
  • Determine properties of  buried fill material
  • Perform site specific seismic characterization studies efficiently and economically
  • Minimizes number of boreholes required
  • No permitting required
  • Can be carried out in urban settings
  • Uses ambient noise as seismic energy source

Descarga nuestra Presentación MASW acá ...

GEC Geophysical Exploration & Consulting S.A.

Face the depth ...